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Abstract: Coordinated multi-arm manipulation requires satisfying multiple si-
multaneous geometric constraints across high-dimensional configuration spaces,
which poses a significant challenge for traditional planning and control methods.
In this work, we propose Adaptive Diffusion Constrained Sampling (ADCS), a
generative framework that flexibly integrates both equality (e.g., relative and ab-
solute pose constraints) and structured inequality constraints (e.g., proximity to
object surfaces) into an energy-based diffusion model. Equality constraints are
modeled using dedicated energy networks trained on pose differences in Lie alge-
bra space, while inequality constraints are represented via Signed Distance Func-
tions (SDFs) and encoded into learned constraint embeddings, allowing the model
to reason about complex spatial regions. A key innovation of our method is a
Transformer-based architecture that learns to weight constraint-specific energy
functions at inference time, enabling flexible and context-aware constraint integra-
tion. Moreover, we adopt a two-stage batch-wise constrained sampling strategy
that improves precision and sample diversity by combining Langevin dynamics
with resampling and density-aware re-weighting. Experimental results on dual-
arm manipulation tasks show that ADCS significantly improves sample diversity
and generalization across settings demanding precise coordination and adaptive
constraint handling.
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1 Introduction

Robots operating in human environments must be capable of performing increasingly complex tasks
that involve interaction with diverse objects, unstructured scenes, and coordination across multi-
ple end-effectors. As tasks grow in complexity [1], such as moving large furniture, assembling
components, or cleaning expansive surfaces, individual manipulators often reach their physical and
functional limits. Multi-degree-of-freedom (DoF) systems, such as bimanual robots and mobile ma-
nipulators, provide a scalable way to address such limitations by enabling spatial coordination and
collaborative manipulation [2].

One core capability that these systems unlock is collaborative transport, where multiple agents work
together to move objects that are too large, heavy, or geometrically constrained for a single robot to
handle. However, this capability comes at the cost of dramatically increased complexity: planning
motion trajectories for such systems requires satisfying a wide range of spatial and physical con-
straints,e.g., maintaining stable grasps, ensuring collision-free motion among robots and with the
environment, and respecting the kinematic limits of each agent. This results in high-dimensional
problems with complex nonlinear constraints in configuration and task spaces [3].

Traditional constrained optimization methods and sampling techniques such as Markov Chain
Monte Carlo (MCMC) [4] offer principled approaches to constraint satisfaction in such settings.
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However, their reliance on local gradient information often limits their capacity to explore multi-
modal distributions or reason globally about the scene geometry. Recent generative approaches have
shown promise; diffusion models were applied to SE(3) grasp synthesis [5] and to compositional
object placement [6], but they typically assume fixed constraint structures and manually specified
weighting schemes. Moreover, they often struggle to scale to systems with high-dimensional, inter-
dependent constraints, such as those in multi-arm or mobile manipulation platforms.

To address these limitations, we introduce Adaptive Diffusion Constrained Sampling (ADCS),
a generative framework for high-dimensional, constraint-aware sampling in multi-DoF robotic sys-
tems. ADCS is designed to integrate both equality and inequality constraints in SE(3) task space
while remaining adaptable to different robot morphologies and task conditions. The key novelty lies
in two adaptive mechanisms. First, we introduce an Adaptive Constrained Conditioning, in which
the model during training learns to generate feasible SE(3) poses conditioned on the scene geome-
try via Signed Distance Fields (SDFs). During sampling, we apply differentiable constraints in joint
space using a chain rule, enabling flexible post-hoc adaptation to robot-specific constraints such
as joint limits, reachability, and grasp feasibility. Second, we propose a Compositional Weighting
Transformer method, in which, instead of manually specifying energy-function weights, we incor-
porate a Transformer-based architecture that learns to dynamically compose task-specific energy
terms, allowing the system to prioritize constraints adaptively across varying tasks and contexts, to
allow for optimizing challenging tasks with varied co-occurring constraints. Moreover, the CWT
can handle new types of constraints without requiring retraining.

In addition, ADCS uses a sequential sampling strategy that combines Langevin dynamics, density-
aware re-weighting, and Gauss-Newton refinement, which leads to faster convergence and better
precision in constrained sampling. We evaluate ADCS in several collaborative manipulation sce-
narios, including object transport and surface pattern stippling, using both simulated and real-world
multi-arm systems - a two Franka Emika Panda arm system and a bimanual TIAGo robot. Across
these settings, ADCS consistently outperforms baseline approaches in terms of task success, sam-
pling efficiency, generalization to novel scenes, and constraint satisfaction.

To sum up, our main contributions are as follows. (i) We propose ADCS, a diffusion-based frame-
work for constraint-aware generative sampling in multi-DoF robotic systems. (ii) We introduce
CWT, a Transformer-based mechanism that dynamically composes constraint energies, eliminating
manual weight tuning and generalizing to new constraints. (iii) We formulate a two-stage batch-wise
constrained sampling process that enables the application of task- and robot-specific constraints in
joint space, even post training.

2 Preliminaries

Here, we formally define the constrained sampling problem, describe the types of constraints con-
sidered, and outline the NLP-based sampling method used to generate training data for our model.

Problem Statement. We consider a multi-DoF robotic system composed of multiple manipulators
operating in a shared workspace. Let Q@ C R™*? denote the joint configuration space, where n
denotes the number of robots/end-effectors and d denotes the Dof of each robot, and let C = {¢;}
be a set of task-specific constraints on configurations ¢ € Q. Each constraint is either an equality
¢i(q¢) = 0 or an inequality ¢;(¢) < 0. These constraints capture spatial relationships, kinematic
feasibility, and task semantics across the robot and the environment.

Constraint Types. We consider the following types of constraints: (i) SE(3) Pose Constraints:
enforce absolute or relative poses between end-effectors. Given two poses Hi, Hy € SE(3), the
constraint is H; YH, = Tiarger; (i) Orientation Constraints: constrain either a specific axis (e.g.,
Y-axis of the gripper aligned with Z-axis of the world) or the full rotation R = Ryy; (iii) Midpoint
Constraints: enforce the midpoint between two end-effectors to match a target (equality) or lie
on a surface (inequality); (iv) Signed Distance Constraints: encode proximity to object surfaces



for surface contact or collision avoidance; (v) Joint and Self-Collision Constraints: enforce joint
limits and prevent inter-link collisions using a set of differentiable bounding spheres.

NLP Sampling.  To generate training data, we use NLP Sampling [4], a method for sampling
from the constraint-satisfying region defined by C. Each constraint ¢;(q) is mapped to a slack term:
inequality constraints use [c;(q)]., and equality constraints use |¢;(q)|, where [] ;. denotes the ReLU
function. The aggregated slack vector s(q) defines the relaxed energy:

Fyu(q) =vf(q) + ulls()]?, (1)

where f(q) is a task-specific density and -+, 1 balance task likelihood and constraint satisfaction.
Sampling proceeds in two stages: first, Gauss-Newton descent minimizes ||s(q)||? over Kgown steps
to find a feasible configuration; then, interior sampling, such as manifold-RRT [7] or Langevin
dynamics [8], is applied for Ky, iterations to generate diverse samples from the feasible region.
This approach produces high-quality training data for constraint-aware generative modeling.

3 Adaptive Diffusion Constrained Sampling

In this section, we describe our framework for generating diverse, constraint-satisfying solutions
in multi-DoF robotic systems. We first introduce our compositional energy-based formulation for
modeling constraints in a diffusion framework. We then describe the model architecture, training
loss, and how the learned model can be used for efficient sampling at inference time.

3.1 Adaptive Compositional Diffusion with Conditioning

Given a set of constraints C = {¢;}, we aim to sample robot poses H € SE(3)™ (for n end-effectors)
that satisfy all constraints in C. We model the conditional distribution over poses using an energy-
based model (EBM), enabled by the use of diffusion models. Unlike standard DDPMs [8] that
generate samples from noise via learned denoisers, we use diffusion training solely to learn a score
function for constraint-driven energy modeling based on denoising score matching [9]. For each
individual constraint ¢ € C, we define an energy function Fy(H | ¢), and the associated probability
is given by p(H | ¢) o« exp(—FEg(H | ¢)). We assume these models assign approximately uniform
mass over the feasible region of each constraint. To satisfy all constraints jointly, we construct a
composed distribution by minimizing the sum of individual energy functions

Hy = arg mbl(n;Eg(H | ). (2)

Similarly to Liu et al. [10], the joint diffusion distribution over noisy latent variables Hy, (at timestep

k) under all constraints cg, ..., cy € C is given by
N
p(Hy | ci)
p(Hy | co,--en) < p(Hy) | | =5~ 3)
(Hy | ) 17
which leads to the following form for the composed energy
N
Ey(Hy, | o, .-, ¢n) = woEg(Hy | co) + Y wi (Eg(Hy | co,ci) — Bo(Hy | o)), ()
i=1

where cg is a fundamental constraint (e.g., task-space goal, which should be satisfied in every task),
and the remaining energies are conditioned on the satisfaction of ¢y, since in all of our tasks, the end-
effector’s relative pose constraints ¢y should be satisfied. The weights w; determine the influence of
each constraint during composition and can be either fixed or learned (see Sec. 3.2).

To enable learning in the Lie group SE(3)", we inject Gaussian noise in the Lie algebra se(3)™, to
maintain manifold consistency. Specifically, for a clean pose H, we apply a perturbation via the
exponential map [5]:

H = H -Expmap(c), e~ N(0,071), €c R, (5)
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Figure 1: Overview of the Adaptive Diffusion Constrained Sampling (ADCS) architecture. The model consists
of three components: a constraint feature encoder, an energy network (MLP), and the Compositional Weight-
ing Transformer (CWT). During training, noisy poses in SE(3)™ are used to learn constraint-aware energy
functions. In inference, sampling is performed in batched joint space using Langevin dynamics guided by the
learned energy landscape.

where oy, is the noise scale at timestep k, and Expmap maps noise vectors in the tangent space to
elements of the Lie group. To train the model, we adopt a denoising score matching objective [9],
which minimizes the discrepancy between the model’s gradient and the gradient of the Gaussian
perturbation distribution. The training loss is

1 & ~ ~ 2
L=+ kZ:oEHﬁ [HvﬁEg(H |C.k) = Vg loga(f | H,o}0)| } : ©6)

where ¢(H | H, o¢1) is the Gaussian perturbation distribution in the Lie algebra se(3)", and V 5

denotes the gradient w.r.t. the perturbed pose H € SE(3)". Since SE(3)" is a Lie group, gradients
are computed in the associated tangent space via a local reparameterization (details in the Appendix).
This formulation learns an EBM implicitly through a diffusion process. While standard diffusion
models learn a generative process via denoising predictions, our framework instead learns the score
function, i.e., the gradient of the log-probability—directly. The trained energy function Ey(H | C, k)
thus estimates the gradient of the log-density at different noise levels. At inference time, we discard
the forward diffusion and use the learned score function as input to Langevin dynamics, iteratively
refining a sample by ascending the composed energy landscape as we describe in Sec. 3.3

3.2 Compositional Weighting Transformer

To enable flexible and context-aware integration of multiple constraint energies, we introduce the
Compositional Weighting Transformer (CWT). Rather than statically assigning scalar weights to
each constraint model, the CWT learns dynamic composition weights conditioned on the current
energy values and their interrelations. The key intuition is that the Transformer [11] enables contex-
tual weighting: it attends to all constraint-specific energy values jointly and can adapt the relative
importance of each constraint depending on their magnitudes, types, or combinations. This makes
the composition mechanism permutation-invariant (no fixed order of constraints is required) and
adaptive to task conditions, as the model can, for instance, downweight a nearly satisfied constraint
and prioritize violated ones during inference.

As illustrated in Figure 1, each energy scalar Ey (ﬁ | ¢;) corresponding to constraint ¢; € C is
treated as a token. These tokens are concatenated and passed through a Transformer, which outputs
a set of normalized weights {w;}. The final composed energy is Eiw(H) = Y, w;Eg(H | ¢;).
We use positional encodings and energy’s encodings for the input tokens, but unlike the original
Transformer [11], in CWT, those are randomly sampled at each iteration since there is no intrinsic
ordering among constraints. Since each type of constraint has its own independent energy encoder,
all constraint types are implicitly encoded. This enables modularity and compositional general-
ization across tasks and scenes without retraining. Compared to approaches that directly merge
constraint features using fully connected layers [12, 13], CWT preserves the identity of each con-
straint’s energy and defers fusion to the composition stage. This enables each constraint energy to
preserve both geometric structure and semantics, while allowing adaptive trade-offs between them
as the constraint energies change with the environment. CWT is trained jointly with the energy



networks and feature encoders using the diffusion-based loss in Eq. 6, without requiring additional
supervision. A full training pipeline is provided in A.2 and Algorithm 1 in the Appendix.

3.3 Two-stage Batch-wise Constrained Sampling

At inference time, we use the learned diffusion model to generate batched joint configurations that
satisfy a set of geometric constraints. To this end, we adopt a sequential sampling strategy inspired
by Toussaint et al. [4], which combines Annealed Langevin Monte Carlo (ALMC) sampling with
resampling and correction steps. The procedure is summarized in Algorithm 2 in the Appendix.

Annealed Langevin Sampling. In each ALMC call, we first draw a batch of joint configurations
q;° from a standard Gaussian distribution. Using PyTorch Kinematics [14], we compute the corre-
sponding end-effector poses Hy* € SE(3)™ via forward kinematics. These poses are then passed
through the energy network to compute their corresponding energies Eg(H;* | C, k). Next, we

compute the gradient of the energy w.r.t. the joint configuration ¢;'* using PyTorch’s AutoDiff [15].
OFEq(Hy|C)k) = OH)

OHy, 6(]2’8
are then updated using a Langevin step. To improve convergence, we adopt a second-order strategy
similar to Carvalho et al. [16], but instead of relying solely on first-order gradients, we introduce an

approximate batch-wise Gauss-Newton update during this correction phase. The update direction is

computed as g,,, = —(J " J)7'J ", where J = 9 = L& % and r is the residual value. This ap-

proximation accelerates convergence while preserving the structure of the learned data distribution.

This gradient is obtained via the chain rule V,FEy = . The joint configurations

Following each ALMC sampling pass, we perform a deterministic second-order refinement step
to improve the quality and constraint satisfaction of the sampled configurations. In this phase, we
reduce the step size and omit the Gaussian noise, allowing the model to converge more precisely. We
apply a Gauss-Newton correction g,,, during this step, using approximate second-order information
to guide updates in joint space. Importantly, we restrict this correction to the refinement phase to
avoid distorting the learned distribution during stochastic sampling, as discussed in [17, 18].

Resampling Phase. After the initial ALMC sampling and second-order refinement, we perform a
resampling step to promote diversity among the generated configurations. We begin by sorting all
samples based on their energy values and selecting a fixed number of the top-performing configura-
tions. To avoid over-representing densely clustered solutions, we estimate the sample density p(x)
using Kernel Density Estimation (KDE) with a Gaussian kernel [19]:

p<x>=@§;ff(ﬁ%), K(w = —exp (—‘;) @

where M is the number of retained samples, z; are the sampled configurations, and h is the kernel
bandwidth. Replication weights are assigned inversely proportional to p(z;): samples in dense re-
gions are duplicated less frequently, while those in sparse regions are upweighted. This reweighting
encourages broader exploration of the configuration space, improving the final sample diversity.

4 Experimental Results

We evaluate our method, ADCS, across a suite of constrained motion generation tasks and compare
it to representative baselines: Gauss—Newton uses the predefined sampling cost, with updates com-
puted as Aq = —(J " J)~1J "r. Diffusion-CCSP [6] follows a similar energy-based formulation,
with fixed (uniform) constraint weights and annealed Langevin dynamics as the sampler. NLP-
Sampling uses the method from [4], note that its internal optimization loop is not externally control-
lable, so we specify only the number of final samples. All methods are evaluated over 10 random
seeds (0-9), and we report average metrics across these runs. For fair comparison, Gauss—Newton
and CCSP are run for 600 iterations, matching the sampling budget of ADCS.



4.1 Simulation Experiment
We design four simulation tasks featuring increasingly complex geometric and pose constraints (see

Figure 2). All tasks are performed using a dual-arm Franka robot. For each task, we generate 500
samples using each method (batch size is 500).
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Figure 2: Sampled configurations for simulation ieg;(ljsumformlty by NLP Sampling, CCSP and

tasks.

All tasks involve a relative pose constraint between the two end-effectors and a midpoint constraint.
(1) Obstacle Avoidance: relative pose + symmetric midpoint constraint and adds a spherical obsta-
cle to avoid. (2) Orientation Alignment: adds orientation alignment with the table plane without
obstacle, i.e., the EEF’s Y-axis is aligned with the world’s Z-axis. (3) Rectangle Constrained Sam-
pling: midpoint lies inside a box (defined via bounds), with fixed EEF rotation matrix. (4) Surface
Contact Sampling: replaces the region with a surface defined by a point cloud and loosens the ori-
entation constraint to be normal to the surface, i.e., the EEF’s Z-axis is aligned with the negative
world Z-axis.

In Table 2, we report mean, median, and third-quartile values for position and rotation er-
rors across four tasks. Under a fixed sampling budget (600 iterations), ADCS consistently yields
significantly lower constraint satisfaction errors than Gauss—Newton and Diffusion-CCSP. Espe-
cially in tasks with smaller feasible regions, such as Rectangle Constrained Sampling, our method
demonstrates stronger performance compared to the baselines. And compared to the state-of-the-art
NLP-Sampling, it outperforms in most metrics while requiring shorter sampling time. In contrast,
ADCS offers strong accuracy with significantly improved efficiency and broader applicability.

We also compare the spatial quality of samples generated by NLP Sampling, CCSP, and ADCS
in Table 1, evaluating both coverage and uniformity of the resulting distributions. Task Obstacle
Avoidance and Orientation Alignment focus on the 3D position of a single end-effector, while Task
Rectangle Constrained Sampling and Surface Contact Sampling assess the midpoint distribution
between two arms. Coverage is computed as the fraction of occupied voxels in a predefined 3D grid,
while uniformity is measured by the variance in density across voxels, lower variance indicates a
more even spread of samples. As shown in the table, ADCS achieves superior coverage in most tasks
and lower variance in most cases, highlighting its ability to explore constraint-satisfying regions
more thoroughly.

4.2 Real-World Experiment

We have designed eight different tasks that integrate our ADCS with motion planning. Under var-
ious specified constraints, these eight tasks involve stippling operations, i.e., two Franka robots
collaboratively grasp a pen to perform different stippling tasks as shown in Figure 3. In addition, we
conducted tests on the TIAGo robot, allowing it to carry objects using both hands.

To integrate with motion planning, we first perform radius-based thinning on the original sampled
points to filter out all points within a specified radius of the selected points. We then sort the remain-
ing points using different, task-specific sampling and sorting strategies. After sorting, we inspect
the distance between consecutive points in the joint space. Whenever the distance exceeds a preset
threshold, we use the Gauss-Newton [20] method to project to obtain a closer joint configuration,
which usually converges in just two to three iterations.



RPE (mm) MPE (mm) RRE (rad) ERE (rad) Time (s)

Median Q3 Median Q3 Median Q3 Median Q3 Mean
Obstacle Avoidance
NLP Sampling | 0.0180 0.0660 0.0070 0.0292 4.652¢e-5 0.0001 - - 61.4200
Gauss-Newton | 0.0001 0.0003 | 7.649¢e-5  0.0001 1.718e-7  3.215e-7 - - 6.5329
CCSP 5.7985 23.6867 9.9820  31.7004 0.0128 0.0373 - - 9.1025
ADCS (ours) 0.0001 0.0002 | 6.837e-5 8.652e-5 | 1.560e-7  2.149e-7 - - 10.3321

Orientation Alignment

NLP Sampling | 0.0358 0.0639 0.0177 0.0350 7.012e-5 0.0001 0.0002 0.0003 | 72.8657
Gauss-Newton | 13.5566  109.0678 | 2.1668  46.6404 0.0366 0.3812 | 3.576e-07  0.0185 7.6832

CCSP 12.5211 38.7049 | 11.1668  38.5522 0.0101 0.0309 0.0341 0.0671 9.3460
ADCS (ours) 0.0050 0.0060 0.0026 0.0029 1.495e-5 1.611e-5 | 1.192¢-7 1.788e-7 | 10.0325

Rectangle Constrained Sampling

NLP Sampling | 0.0176 0.0712 1.0019 4.4726 0.00003  0.00009 | 0.00001  0.00004 | 61.3578
Gauss-Newton | 0.0008 121.098 0.3174 9.4909 | 1.412e-06  0.2704 5.277e-7  3.418e-5 | 7.7406

CCSP 170.4515  257.2366 | 21.8248  56.5533 0.0458 0.1007 0.1334 0.2218 | 10.3574
ADCS (ours) 0.0001 0.0002 0.1690 0.2267 1.727e-7  2.394e-7 | 1.334e-7  1.883e-7 | 11.3247

Surface Contact Sampling

NLP Sampling - - - - - - - - -
Gauss-Newton | 66.8540  247.1499 | 4.4389  44.8222 0.0875 0.5902 0.0003 0.0188 8.0048
CCSsp 237275  58.6257 | 11.3875  23.6884 0.0282 0.0691 0.0710 0.1411 | 13.7951
ADCS (ours) 0.0010 0.0013 1.8522 2.8253 | 7.439e-7  9.614e-7 0 5.960e-8 | 14.9514

Table 2: Comparison of Gauss—Newton, CCSP, and ADCS across 4 tasks. For each task and method, we
report RPE (relative position error (mm)), MPE (mid-point position error (mm)), RRE (relative rotation error
(rad)), and ERE (end-effector rotation error in the world frame (rad)) by median and third quartile (Q3), and

RPE MPE RRE ERE VPR

Fixed Midpoint with

Orientation Alignment 6.9647 1.6872 0.0074  0.0042  72.60

Circular

ConstrainedStippling 0.0706  0.0024  0.0001 4.27e-05 98.40

Inclined Circular

Constrained Stippling 0.2818 0.0018 0.0003  0.0001  88.40

Rectangle

Constrained Stippling 0.1541  0.0097 0.0002  0.0002  90.60

Inclined Rectangle

Constrained Stippling 0.6734  0.0312 0.0006  0.0007  84.80

Letter Pattern Stippling 2.7895 0.0316 0.0085  0.0101 80.40
Cube Surface Stippling 2.0677 0.0387 0.0055 0.0063 8245
Cylinder Surface Stippling  2.3240  0.0282 0.0058  0.0087  80.70

Table 3: The constraint errors (Q3) and the ratio

Figure 3: The real-world experimental setup involves  of valid points (VPR (%)) of different tasks in the
two Franka robots collaboratively grasping a pen for  real-world.

stippling operations and a TIAGo to carry objects us-
ing both hands.

As illustrated in Figure 4, we evaluate eight real-world tasks. All tasks involve a relative pose
constraint between the two end-effectors, as well as orientation constraints for the end-effectors.
(1) Fixed Midpoint with Orientation Alignment: constrains the midpoint between the two arms to a
fixed location. (2) Circular Constrained Stippling and (3) Inclined Circular Constrained Stippling:
restrict the midpoint to lie within a (inclined) circular bounding box. (4) Rectangle Constrained
Stippling and (5) Inclined Rectangle Constrained Stippling: restrict the midpoint to lie within a
(inclined) rectangle bounding box. (6) Letter Pattern Stippling requires the midpoint to follow
point clouds generated from mesh models of letters. Finally, (7) Cube Surface Stippling and (8)
Cylinder Surface Stippling: constrain the midpoint to the top surface of real objects, with point
clouds obtained directly from a camera.

In Table 3, we present the constraint error and the ratio of valid points for each task. Note that
each task was tested ten times, and in every task, 500 points were generated through sampling. We
consider a point valid if its positional error is less than 3 mm and its orientational error is less than
0.005 rad. As shown, the probability of valid points exceeds 80% in most tasks.
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Figure 4: Final stippling layout of 8 different real-world tasks.
4.3 Generalization and Robustness Capability

To evaluate the generalization capability of our model, we tested the constraint values outside of the
training data under different tasks. The detailed results are provided in the Appendix A.9.

5 Related Works

Constrained Sampling. Sampling under constraints is central to problems in MCMC, optimiza-
tion, and robotics. With equality constraints, the task reduces to sampling on a manifold [7, 21],
while linear inequalities lead to polytope sampling [22]. Toussaint et al. [4] proposed a restart-based
NLP sampler for nonlinear constraints in robotics, assuming only local access to cost and constraint
functions. In contrast, we focus on sampling from complex, multimodal constrained distributions.
Generative Models for Constrained Optimization. Deep generative models such as DDPM [§]
and SVGD [23] are powerful tools for sampling from multimodal distributions. Their ability to
capture disconnected regions makes them attractive for constraint-aware inference [24]. Existing
works [25, 6] apply diffusion models to constraint-aware tasks, but often focus on low-dimensional
object poses or categorical approximations. Diffusion-based motion planners [16, 26, 27] reframe
planning as sampling in energy-based models, but struggle to scale with multiple, nonlinear con-
straints. Our method addresses this by learning a compositional energy model with transformer-
based adaptive weighting for rich constraint integration.

Automatic Weight Tuning. Designing appropriate constraint weights is tedious and sensi-
tive [5, 28]. Prior methods either optimize weights [29, 30] or learn them from data [31, 32],
but these are not directly applicable to diffusion-based models. Recent approaches [5, 6, 16] use
fixed weights, whereas our method trains a transformer (CWT) to reason over constraint types and
adaptively weight them at inference.

6 Conclusion

In this paper, we introduced Adaptive Diffusion Constrained Sampling (ADCS), a generative frame-
work designed to effectively integrate equality and inequality geometric constraints within multi-
DoF robot manipulation tasks. Our approach uses a dedicated energy network to calculate the cost of
equality and inequality constraints, and introduces an SDF network to incorporate external environ-
ment perception, while combined with a Transformer-based architecture for dynamically weighting
these constraints during inference. Experimental evaluations across four simulation tasks and eight
real-world tasks demonstrated that ADCS outperforms baseline methods, also applicable to scenar-
ios with small feasible areas and strict spatial constraints. Additionally, through ablation studies,
we verified that transformer-based dynamic weights, KDE-based resampling, and batch-wise con-
strained sampling significantly enhance sample uniformity and performance. Moreover, our sampler
can be used to construct a roadmap for enabling motion planning. Finally, our method’s robust gen-
eralization was validated on out-of-distribution data, confirming its adaptability and efficiency in
realistic robotic applications.



7 Limitation

In this work, the SE(3) constraints are defined by manually specifying corresponding numerical
values, rather than through instructions like “align both hands”. An interesting direction would be
to combine this with Vision-Language Models (VLMs) and define the related constraints through
Large Language Models (LLMs). Furthermore, LLMs could be employed to define cost functions
for the Gauss-Newton refinement, thereby allowing a more general optimization framework. Lastly,
the current training process does not incorporate information about the corresponding joint configu-
rations. Future improvements include joint information during the training phase to improve model
performance and accelerate convergence during inference.
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A Appendix

A.1 Cost Functions for Sampling

We consider these cost functions in the tasks:

(1) SE(3) Cost: Given two points H; = ﬁ)l ’ﬂ , Hy = [ o 1
defined as csg3 = ¢; +c¢,., where ¢; = ||t —t2||%, ¢, = Log(R; T Ry) , while Log(-) maps a rotation
matrix R € SO(3) into its tangent space Lie-algebra so(3), here we use Theseus [33] to compute

this.
(2)SDF Cost: Here we use the SDF value computing by [14] directly, i.e., csas(H;) = SDF(Hy).

e tz} € SE(3), the cost can be

(3) Obstacle Collision Cost: Similar to the work of Mukadam et al. [34], we instantiate N collision
spheres for the robot. By using differentiable PyTorch kinematics [14] to compute the forward
kinematics, we obtain the position p(g, s,,)of each collision sphere, where ¢ denotes the robot’s
joint configuration. We then compute the distance to the obstacle via a differentiable signed distance
function d(p, obs). For any joint configuration, the obstacle collision cost can be expressed as:

Cobs(q) = va(d(pi, obs) — €;), where € is the radius of the collision sphere.

(4) Self-Collision Cost: Similar to the obstacle collision cost, we attach a set of collision spheres
as a group to each link for collision detection, and then compute the distances between each pair of
sphere’s groups as the self-collision cost.

(5) Joint Limit Cost: We constrain the joints within specified ranges by incorporating an L2 norm
and introduce a degree ¢ of redundancy to minimize edge cases as much as possible.

A.2 Training Structure

Training Architecture In order to make the trained model flexibly applicable to different types of
robots, we perform data noising in SE(3) space during the training phase, and then map to the joint
space for sampling during the inference phase. In this work, we focus primarily on SE(3) constraint
problems, with each constraint energy network implemented as a five-layer multilayer perceptron
(MLP). We manually define feature functions f.(-) for SE(3) constraints to capture the target feature.
These features are then encoded and input into the energy network. We also incorporate the object’s
point-cloud information as an inequality constraint, e.g., ensuring that sampled points lie within a
specified region. To enable our model to generalize better across different object shapes, we define
a learnable shape code z, as in work [35], and jointly train a network to predict SDF values with
given z,, replacing a hand-defined feature function, so that model can closely approximate the true
SDF values. Here the ground-truth SDF values are computed during training using [14]. Finally, the
predicted SDF values together with the shape code z, are fed as inputs into the energy network.

As shown in Alg. 1, our training process consists of four main parts. First, we use the point-cloud
encoder £} to map the raw point cloud o to a latent code z,, then feed z, and the perturbed data H
into the SDF network ngf to predict the SDF values §, and compute the prediction loss Lggt($, )
against the ground-truth SDF s. Second, for each predefined geometric or physical constraint ¢;,
we extract the corresponding feature f; from H and estimate its energy e; = Ey(f;). If a constraint
is inactive, we simply set e; = 0. Third, we concatenate the energies {e;} as tokens and feed
them into the Transformer Fj;""*, which produces a set of weights {w; }. The total energy is then
computed as F = Zi e; w;. Finally, we get the Lq;g from Eq. 6 and combine the two losses,
while back-propagate to update all model parameters 6, thereby improving both SDF accuracy and
constraint consistency.

It is worth noting that our model is jointly trained. However, instead of training on all constraints
simultaneously in every iteration, we randomly sample a subset or a single constraint for each train-
ing step. This strategy allows the model to better capture the relationships and interactions among
different constraints.
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Algorithm 1: Adaptive Diffusion Constraint Model Training

Given : 0: initial params for Fydf FPe fleature prirans )
C': constraints set,
N: maximum number of constraints
Datasets: D, : {0}, object’s point cloud,
Dy : {H}, training data H € SE(3);
fors<0toS—1do

1

2 Sample noise scale k, o, < [0, ..., L];

3 Sample object point cloud o € D,;

4 Sample H ~ Dp;

5 e~ N(0,021);

6 H = HExpMap(e) ; // Add the noise
7 SDF Train

8 zo < F)%(0) 3 // Encode the point cloud
9 8 F3¥(2,, H) ; // Predcit the SDF value
10 s« SDF(H) ; // Compute the ground-truth SDF value
11 Lear < L(8,5);

12 Energy Net Train

13 fori =0to N — 1do

14 if ¢; € C then

15 fi < Fefeat“re(]f[,ci); // Get the features from each constraint
16 ei +— Eo(fi;0); // Estimate each energy
17 else

18 | e+ 0; // Zero padding
19 end

20 end

21 Transfomer-based Weights Train

22 {wi Nyt Fians({e;}N 1) s // Compute the weights using Transformer
B | Crotal & Son g e wis

24 Laig zﬁ(et(,ml,ﬁ,H, ok); // Compute the loss > Eq. 6
25 Parameter Update

26 L < Lt + Lais;

27 0 0—-nVyL; // Update the parameters 0

28 end
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A.3 Sampling Structure

Algorithm 2: Adaptive Diffusion Constraint Sampler

Input: {0} }£_,: Noise levels;
L: Diffusion steps;
e: Step rate;
ns: Number of initial samples;
n,: Number of resampling samples;
ty: Fixed time step;
oy Fixed step rate;
C': Constraint set
Output: Final samples ¢;*
1 Initialize g7 ~ pr(q);
40", ep® < ALMC(q}*, 0k, L, €, ty,af,C) 5 // Get the joint configurations and
energy after fisrt stage sampling > Alg. 3

(5]

3 g0 <+ sort(qg*, ef*) // Select data with less energy
4 p(q) + KDE(qy") ; // Estimate density
5 w; < 1/p(qs) s // Compute the replication weights
6 q;° < repeat(q)”, w;) ; // Repeat data based on weights
7 q5°, e < ALMC(q}*, 0, L, €, t5,a5,C) ; // Get final ¢(* > Alg. 3

Algorithm 3: Annealed Langevin Markov Chain Monte Carlo Sampler (ALMC)

Input: {0}t |, L, e, ns, ty, oy, ¢}, C
Output: Final samples ¢;*

1 for k < Lto1ldo

2 H}'* < FK(q.*);

3 en, < Eg(Hy* k,C) s // Compute the energy

4 a —€e-op/or; // Select step size

5 e~N(0,1I); // Sample white noise in joint space
2

6 Qe ar + (—%g;g + Oék6> ; // Make a Langevin dynamics step

7 end

8 for k < Lto1ldo
Hyrr  FK(gz);

10 | ey, — Eo(H " t;,C); // Compute the energy

n | rg« f(H,C); // Compute the sampling cost

12 Jy = adq'i%gs : // Compute the jacobian

13 Gn. < (JgTdg) Py Try s // Compute the Gauss Newton
2 .

14 Qi —q + (—%g;‘g; —gns) ; // Make a Langevin dynamics step

15 end
6 return g;°;

[y

Here we describe our sequential sampling structure. It consists of two stages, each of which uses
the ALMC algorithm. Between these stages, we perform resampling via a KDE-based replication
method. The sampler consists of two nested components:

Adaptive Diffusion Constraint Sampler: Generate n; initial joint configurations from A/ (0, I') and
run one pass of ALMC to compute their energies at each noise level. Sort these samples by energy,
estimate their density via KDE, and compute replication weights to resample n, configurations.
Finally, run a second ALMC pass on the resampled set to produce the final samples.

Annealed Langevin MCMC: For each noise level oy, perform Langevin updates by computing

VL' via the chain rule g—fl%—g and injecting Gaussian noise. Then enter a deterministic refine-

ment phase where noise is dropped and an approximate Gauss—Newton correction (J.J)~1J Tr
is applied to accelerate convergence. And in this work, we also adopt a batch-wise Gauss—Newton
optimization scheme, where multiple constraint instances are solved simultaneously within each iter-
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ation. Instead of updating the parameters using a single constraint residual, the algorithm aggregates
the Jacobians and residuals from an entire batch, forming a block-structured normal equation. This
design leverages parallel computation, improves numerical stability, and accelerates convergence by
exploiting shared information across similar problem instances.

A4 Comparison with Diffusion-CCSP

In our work, we consider Diffusion-CCSP as the primary baseline for comparison. Compared
to Diffusion-CCSP, our approach introduces several improvements that lead to stronger perfor-
mance. While we retain its original network structure, which composes multiple constraint objec-
tives through an energy-based model, for a fair comparison, there are key differences. First, unlike
Diffusion-CCSP, our method incorporates the task-specific feature functions from ADCS, which
are essential for enhancing generalization. Second, we find that, in particular, Diffusion-CCSP uses
fixed composing weights and relying on the ULA sampler during inference, which significantly limit
its ability to adapt to different constrained problems and sample effectively. In contrast, our method
benefits from transformer-based learnable constraint weighting and a more expressive sequential
sampling strategy, resulting in better performance across tasks.

In summary, while CCSP introduced compositionality in diffusion for scene-level object constraints,
our work extends this principle to structured, high-dimensional robot constraints. With adaptive
weighting, multi-type constraint fusion, and real-world execution, our approach effectively connects
abstract constraint composition with practical embodied planning.

A.5 Voxel-based Statistical Method

We also employ a voxel-based statistical method [36] to compute the density of the data distribution.
The principle is to uniformly divide the point-cloud’s bounding box into M3 small cubes (voxels),
count the number n; of points in each voxel, and then assess the dispersion of these counts, as Eq. 8,
o2 represents the variance, a smaller variance indicates a more uniform data distribution. And 7,
represent the coverage of the data.

M

M
1 N2 > o, 1(n; >0) 1, m>0
2 L — =1 _ ) 9
o° = E (nz n)  Te= T 1(n > 0) 0. n<o (8)

A.6 KDE-based Resampling

Under Task Obstacle Avoidance, we compared KDE-based resampling against uniform-replication
resampling, as shown in Figure 5, the KDE-based resampling produces a more uniform distribution
along each axis and exhibits fewer voids. Moreover, as shown in Figure 6, the final samples obtained
through Gaussian-kernel replication are also more uniformly distributed. We estimate the data dis-
tribution density with both voxel size 5 and 10. From Table 4, we can conclude that the KDE-based
resampling method achieves a more uniform data distribution both after the resampling stage and in
the final sampling results.

over Jication o replication ove

(a) Before replication (b) Uniform replication (c) KDE-based replication

Figure 5: This figure illustrates the one end-effector’s position distribution densities along the x, y, and z axes
before replication, after uniform replication, and after Gaussian-kernel-based replication.
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Overall Density Contour Plots uniform replication result Overall Density Contour Plots gaussian kernel replication result

(a) Uniform replication sampling result (b) KDE-based replication sampling result

Figure 6: This figure shows the one end-effector’s position distribution densities along the X, y, and z axes of the
final sampling results after applying uniform replication and after applying Gaussian-kernel-based replication.

Data Distribution Uniformity (Density Variance)
After Replication(5) Final Sampled(5) After Replication(10)  Final Sampled(10)
Uniform replication 78.0000 79.6028 5.5500 5.0039
KDE replication 50.4320 57.4560 4.9580 2.8893

Table 4: The table presents the variance of the end-effector’s positional density distribution for the uniform-
replication and KDE-based-replication methods, both after the resampling stage and after the final sampling.
Smaller variance value indicate a more uniform distribution. We performed out these evaluations using voxel
sizes of 5 and 10.

A.7 Dynamic Weighting via CWT

We compare three composition mechanisms for constraint weighting: fixed scalar weights, MLP-
based dynamic weights, and our proposed Compositional Weighting Transformer (CWT). All mod-
els share the same architecture for the energy and feature networks and are trained without task
likelihoods to isolate the effect of the weighting mechanism. As shown in Table 5, CWT consis-
tently outperforms the other approaches, achieving lower errors across all tasks, underscoring its
ability to adaptively balance constraint satisfaction in diverse compositions.

RPE MPE RRE ERE
Orientation Alignment

Fixed Weights  42.5589 43.4433  0.0403  0.0660
MLP-based  40.9558 43.1051 0.0403 0.0668
CWT 35.0300 34.7487 0.0337 0.0640

Surface Contact Sampling

Fixed Weights  63.3622 27.1177 0.0682 0.1195
MLP-based  73.4915 27.7264 0.0724 0.1014
CWT 62.1286  20.2202 0.0393 0.0857

Table 5: Comparison of constraint composition mechanisms in ADCS: fixed weights, MLP-based dynamic
weights, and the proposed Compositional Weighting Transformer (CWT). Note that there is no two-stage sam-
pling involved in this ablation and all variants use the same energy and feature networks and exclude task
likelihood information during training. We report the third quartile (Q3) error for evaluation.

A.8 Two-stage Batch-wise Sampling

To evaluate the performance gains brought by two-stage sampling, we tested ADCS and ADCS
without two-stage sampling on three different tasks. And each task uses the same threshold, a
sample point is considered valid if its error is smaller than the threshold. As shown in Table 6, for
each task, two-stage sampling consistently yields performance improvements, especially on tasks
with smaller feasible regions.
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RPE MPE RRE ERE
Orientation Alignment
ID  0.0060 0.0029 1.6e-5 -

Valid Sample Rate (%)

Obstacle  Orientation Reactangle

Avoidance  Alignment  Constrained Sampling OOD 0.0535 0.0159 9.8e-5 -
w/o Two-stage 82.3 3.74 1.54 . .
Two-stage 99.46 99.24 99.7 Rectangle Constrained Sampling
Table 6: Comparison of Valid Sample Rates for ID  0.0002 0.2267 23e-7 1.8e-7
ADCS with and without two-stage Sampling. OOD 0.0002 0.2775 2.3e-7 1.9e-7

Table 7: Sampling results of both ID and OOD
datasets to demonstrate the generalization capability.
The error metrics are reported using the third quartile
(Q3) as in Table 2.

A.9 Generalization and Robustness Capability

To evaluate the generalization capability of our model, we tested the constraint values of the In-
Distribution (ID) and Out-of-Distribution (OOD) data under different tasks. In Task Orientation
Alignment, we set the relative pose to values out of distribution and the different positions of the
midpoint together. In Task Rectangle Constrained Sampling, we tested the different bounding box
sizes. As shown in Table 7, even when we input data from outside the training set, our model can
still produce valid sampling results.
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